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Abstract

A two-phase model of heterogeneous explosives, with a reaction rate that is proportional to the gas-
phase pressure excess above an ignition threshold, is examined computationally. The numerical approach,
a variant of Godunov’s method designed to accommodate nonconservative terms in the hyperbolic model,
extends previous work of the authors to two-dimensional configurations. The focus is on the behavior of
an established detonation as it rounds a 90◦ corner and undergoes diffraction. The dependence of the
post-diffraction conduct on the reaction rate is explored by varying the reaction-rate prefactor and the
ignition threshold. The aim is to determine whether the model, as postulated, can capture dead zones,
which are pockets of unreacted or partially reacted explosive observed in the vicinity of the corner in
diffraction experiments. Results of this study are compared with those of a similar investigation on the
one-phase ignition-and-growth model.

1 Introduction

Mathematical modeling of detonation in high-energy condensed-phase explosives presents a variety of chal-
lenges, and as such, is a topic of ongoing study. The explosive is typically a non-homogeneous mixture of a
myriad of materials, including polycrystalline grains of the energetic constituent of varied distributions and
morphology, inert or reactive binders, metallic particulates, additives, and voids. As these components have
widely varying constitutive properties, an initiating shock interacting with the microstructure generates a
commensurately heterogeneous mechanical response at the granular level, caused by such processes as fric-
tion, crystal fracture, plastic deformation, void collapse, shearing, and jetting. This leads to the creation of
hot spots, which are small regions significantly hotter than the averaged temperature in the shocked explo-
sive, and hence discrete sites of initiation of chemical reaction. When averaged over a sufficiently large scale,
this heterogeneous behavior produces an average heat release rate that is a combination of chemical kinetics
at the molecular scale and mechanics at the grain scale. A rational description of the multi-scale behavior
would require a thorough characterization of the underlying processes at each relevant scale, followed by
homogenization across the scales to produce a model appropriate for the scale of observation. While this
goal is being actively pursued, it is not yet a reality. Meanwhile two practical approaches have emerged,
both phenomenological, in which balance laws for state variables at the continuum level are supplemented
by thermo-mechanical and chemical constitutive expressions. The simpler of these approaches treats the
explosive as a homogeneous mixture of two constituents, the reactant and the product, in mechanical and
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thermal equilibrium and subject to a single reaction at a rate that attempts to incorporate microstructural
effects. A well-studied example of this approach is the ignition-and-growth model originally proposed by
Lee and Tarver [1] and later refined by Tarver and colleagues [2, 3, 4, 5]. The second approach recognizes
explicitly the porous nature of the explosive, treating it as a mixture of two distinct but coexisting phases and
allowing mutual exchange of mass, momentum and energy across the interfacial boundaries. Constitutive
expressions for the interfacial exchange accompany the balance laws; they incorporate the micromechanical
submodels and their formulation is constrained by thermodynamic principles. A prominent example of this
approach is the two-phase model considered by Baer and Nunziato [6].

The success of each model is determined by the fidelity to which it is able to capture, and even predict,
experimentally observed phenomena in a variety of experiments. Suitably calibrated, both types of models
have performed well in replicating various aspects of planar, one-dimensional experiments; see, for example,
Tarver and colleagues cited above for the ignition-and-growth model, and Baer and collaborators [6, 7, 8]
for the two-phase model. Nonplanar geometries, however, have been more of a challenge. Consider, in
particular, the appearance of dead zones in corner-turning. Experiments have shown that when a well-
established detonation diffracts around a sharp corner, it leaves behind a sustained pocket of unreacted
material, or a dead zone, in the vicinity of the corner [9, 10, 11]. In earlier studies we have demonstrated
that the standard ignition-and-growth model does not admit dead zones for either rigid [12] or compliant
[13] confinement. In a later study [14] we considered a modification of the ignition-and-growth model to
account for the effect of desensitization by weak shocks, and this enhanced model was shown to be capable
of admitting dead zones. An alternate approach to desensitization was proposed in [15]. To our knowledge,
no studies on detonation diffraction have been reported for the two-phase model.

Recently we have proposed a new numerical approach for the two-phase equations [16] which is a variant
of the Godunov method and includes a rational treatment of the non-conservative nozzling terms of the
model. We have employed it to examine in detail the evolution to detonation following a weak planar impact
in a one-dimensional configuration [17]. In the present paper we extend this numerical approach to two
space dimensions. The equations are discretized on overlapping grids to handle complex flow geometry, and
adaptive mesh refinement is used to increase the grid resolution locally following the approach discussed
in [18]. The computations are performed in parallel following the method outlined in [19]. The extended
computational capability is employed to study detonation diffraction at a corner, and to explore in particular
whether dead zones can be captured by the two-phase model without requiring the explicit introduction of
a desensitization submodel. The calculations assume rigid confinement, similar to that used in [12] for the
ignition-and-growth model.

In a computational study of the two-phase continuum model, a core issue that must be faced at the
outset is the selection of the constitutive terms. Previous studies of two-phase models have generally focused
on specific explosives or classes of explosives, which in turn has led their authors to particular constitutive
choices for the equations of state. However, the choices have been remarkably uniform as far as the rate
of energy release is concerned. For example, Baer and Nunziato [6] considered combustion of spherical
HMX grains at a rate proportional to the pressure in the gas phase. In the treatment by Baer et al [7]
of the granular explosive CP, and by Gonthier and Powers [20] of granulated explosives more generally, a
similar burn rate was employed, along with a specified ignition-temperature trigger. Baer and Nunziato
chose a 2-step reactive model in their later study of ball propellants [8], adding a compaction-induced hot-
spot combustion reaction dependent upon mixture pressure to the gas-phase pressure-dependent burn rate.
In a subsequent effort due to Gonthier and Powers [21] the ignition-temperature switch was replaced by
an induction delay driven by an Arrhenius-like source. Chinnayya et al [22] accommodated a mixture of
materials such as ammonium perchlorate and aluminum particles by including a multi-step kinetic scheme
but keeping the pressure dependence of the rate constants. Thus, a common characteristic of the kinetic
choices has been the dependence of the rate of reaction on the pressure in the gas phase, motivated by
surface regression behavior of condensed explosives. We adopted a similar form, slightly modified to include
a minimum pressure threshold for ignition, in our earlier work [17] and have opted to retain it in the present
study. The equations of state for the two phases are also the same as in [17], an ideal equation of state with
a stiffening term for the solid phase and a virial equation of state for the gas phase. We emphasize that this
work is aimed less at the characteristics of a particular explosive than at the generic behavior. The intent is
to determine whether a feature observed in nonplanar experiments is admitted by a model which has been
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reasonably successful in reproducing observed phenomena in nominally one-dimensional experiments. The
numerical method itself is general enough and can be used with other modeling choices and reaction rates.

With the constitutive forms at hand, we have carried out two preliminary studies to determine the
appropriate parameter space for exploring the reaction rate. The first study sets the reaction rate to zero and
computes piston-driven, planar compaction waves to determine the maximum gas-phase pressure achieved in
a steady compaction wave as a function of the piston speed. This information provides estimates of the range
in which the gas-phase pressure threshold for ignition must lie. The second study sets the gas-phase pressure
threshold for ignition at a value only very slightly above the ambient gas-phase pressure, and examines
the post-diffraction gas-phase pressure drop in the resulting detonation to assess what a reasonable ignition
threshold must be if the reaction is to undergo any extinction at all subsequent to diffraction. With the
relevant range of reaction-rate parameters established in this way, we have selected a set for exploration,
for which we first compute the corresponding steady detonation structures and then the response of the
detonation to corner turning. The results show that both temporary and sustained dead zones can occur,
and that the precise evolution scenario depends upon a delicate balance between the ignition threshold and
the reaction-rate prefactor.

The paper is organized as follows. Section 2 presents the governing equations and the constitutive
assumptions. Model parameters typical of practical explosives and reference scales for nondimensionalization
are introduced in Section 3. Section 4 presents a brief introduction to the numerical method and includes
a grid resolution study carried out to insure accurate resolution of fine features. Results of the numerical
investigation appear in Section 5, and conclusions are drawn in Section 6.

2 Governing equations

We retain the terminology and notation adopted in [17]. When extended to two dimensions, the governing
equations of the two-phase model have the form

∂

∂t
u +

∂

∂x1
f1(u) +

∂

∂x2
f2(u) = h1(u)

∂ᾱ

∂x1
+ h2(u)

∂ᾱ

∂x2
+ k(u), (1)

where the state variable u and fluxes fi(u) , i = 1, 2 are given by

u =



ᾱ
ᾱρ̄

ᾱρ̄v̄1

ᾱρ̄v̄2

ᾱρ̄Ē
αρ

αρv1

αρv2

αρE


, f1(u) =



0
ᾱρ̄v̄1

ᾱ(ρ̄v̄2
1 + p̄)

ᾱρ̄v̄1v̄2

ᾱv̄1(ρ̄Ē + p̄)
αρv1

α(ρv2
1 + p)

αρv1v2

αv1(ρE + p)


, f2(u) =



0
ᾱρ̄v̄2

ᾱρ̄v̄1v̄2

ᾱ(ρ̄v̄2
2 + p̄)

ᾱv̄2(ρ̄Ē + p̄)
αρv2

αρv1v2

α(ρv2
2 + p)

αv2(ρE + p)


,

and the source terms on the right-hand-side are

h1(u) =



−v̄1

0
p
0

pv̄1

0
−p

0
−pv̄1


, h2(u) =



−v̄2

0
0
p

pv̄2

0
0

−p
−pv̄2


, k(u) =



F + C/ρ̄
C
M1

M2

E − pF
−C
−M1

−M2

−E + pF


.

Here, α , ρ , (v1, v2) and p denote the volume fraction, density, velocity and pressure of the gas phase,
respectively, and ᾱ , ρ̄ , (v̄1, v̄2) and p̄ denote the analogous quantities of the solid phase. (The bar
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superscript is used throughout to indicate solid phase quantities.) The total energies are given by

E = e +
1
2

(
v2
1 + v2

2

)
, Ē = ēs +

1
2

(
v̄2
1 + v̄2

2

)
,

where e is the specific internal energy of the gas and ēs = ē + B̄(ᾱ) + q̄ is the specific internal energy
of the solid. The internal energy of the solid is the sum of the internal energy of the pure solid ē , the
compaction potential energy B̄(ᾱ) and the heat release q̄ . The compaction potential accounts for the
configuration-dependent energy of the solid (see [23]). Following [17], we take

B̄(ᾱ) =
(p0 − p̄0)(2− ᾱ0)2

ᾱ0ρ̄0 ln(1− ᾱ0)
ln

[(
2− ᾱ0

2− ᾱ

)
(1− ᾱ)(1−ᾱ)/(2−ᾱ)

(1− ᾱ0)(1−ᾱ0)/(2−ᾱ0)

]
,

where the zero subscript denotes quantities given by a reference ambient state. (A similar form for B̄(ᾱ)
was used in [24].) In addition, following our work in [17], we employ a virial equation of state for the gas
phase and a stiffened equation of state for the solid phase so that

e(ρ, p) =
p

(1− γ)ρ(1 + bρ)
, ē(ρ̄, p̄) =

p̄ + γ̄π̄

(γ̄ − 1)ρ̄
, (2)

where γ and γ̄ are ratios of specific heats, b is a virial gas coefficient, and π̄ is a solid stiffening pressure.
Finally, the volume fractions satisfy the saturation constraint,

α + ᾱ = 1,

which closes the system of equations.
The first equation in (1) describes the compaction dynamics of the two-phase flow, while the remaining

equations represent the balance of mass, momentum and energy for each phase. The non-conservative, or
nozzling, terms appear on the right hand side of (1) and are proportional to the gradient of the volume
fraction, (∂ᾱ/∂x1, ∂ᾱ/∂x2) . These terms model interphase momentum and energy transfer that occurs as
a result of an effective change in the cross-sectional area of the virtual stream tube of the gas phase. The
last term on the right hand side of (1) gives the exchange of mass, momentum and energy between phases
due to compaction, drag, heat transfer, and chemical reaction (see [6, 23]). The rate of compaction is given
by

F = −αᾱ

µc
(p− p̄ + β̄), (3)

where µc is the compaction viscosity and β̄ = ᾱρ̄B̄′(ᾱ) is the configuration pressure. The exchange of mass
due to chemical reaction is given by C < 0 . The form for C depends on the assumed reaction kinetics, and
we have chosen the a pressure-ignition model following the discussion in [17]. This rate has the form

C =

{
0 if p < pign,

−σᾱρ̄(p− pign) if p ≥ pign,
(4)

where σ is a rate constant and pign is an ignition pressure. The exchange of momentum is given by

Mi = Cv̄i +
(

δ +
1
2
C
) (

vi − v̄i

)
, i = 1 , 2 , (5)

where δ is a drag coefficient. Finally, the exchange of energy is given by

E =
(

Ē +
β

ρ̄

)
C +

2∑
i=1

(
Mi − Cv̄i

)
v̄i +H

(
T − T̄

)
, (6)

where H is an interphase heat transfer coefficient, and T and T̄ are temperatures of the gas and solid
phases, respectively. These temperatures are given by

CvT =
p

(γ − 1)ρ(1 + bρ)
, C̄vT̄ =

p̄ + γ̄π̄

(γ̄ − 1)ρ̄
,

where Cv and C̄v are specific heats at constant volume.
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3 Reference scales and model parameters

For the remainder of the paper, we choose to work with dimensionless quantities. To accomplish this, we
first introduce dimensional reference scales following the choices made in [17]. For the numerical calculations
presented in Section 5, we consider a representative explosive with an ambient upstream state given by

α0 = .27, ρ0 = 1 kg/m3, p0 = .25225 MPa, T0 = 300 K,

ᾱ0 = .73, ρ̄0 = 1900 kg/m3, p̄0 = 7.6 MPa, T̄0 = 300 K.

Parameters for the equations of state in (2) are taken to be

γ = 1.35, b = 0.001 m3/kg, γ̄ = 5, π̄ = 3412.4 MPa,

and values for the heat release and for the specific heats are taken to be

q̄ = 6.65× 106 J/kg, Cv = 2400 J/(kg K), C̄v = 1500 J/(kg K).

From these choices, quantities at the steady CJ state may be computed (see [17]). In particular, the steady
CJ detonation velocity is found to be

DCJ = 7508.8 m/s,

and the corresponding density, velocity, pressure and temperature at the CJ state are

ρCJ = 1906.2 kg/m3, vCJ = 2044.3 m/s, pCJ = 21.300 GPa, TCJ = 4577.1 K.

Reference scales are now constructed from the steady CJ detonation velocity, the pressure at the CJ state,
and the choices

tref = 1 µ s, Cv,ref = 2400 J/(kg K). (7)

These scales are

vref = DCJ = 7508.8 m/s, pref = pCJ = 21.300 GPa,

xref = vreftref = 7.5088× 10−3 m, ρref = pref/v2
ref = 377.78 kg/m3,

Tref = v2
ref/Cv,ref = 23492◦ K, Eref = v2

ref = 5.6381× 107 J/kg.

(8)

Dimensionless quantities may now be defined in the usual way by dividing each dimensional quantity
by its corresponding reference scale given in (7) or (8). The result leaves the governing equations in (1)
unchanged, and the corresponding dimensionless upstream state and equation of state parameters are listed
in Table 1. In addition, we require dimensionless parameters for the compaction viscosity in (3), the drag
coefficient in (5), and the heat transfer coefficient in (6). For the purposes of this paper, we choose nominal
values from the range of values considered in [17]. These dimensionless values are

µc = 0.05, δ = 20.0, H = 0.2 .

The remaining parameters of the two-phase model, σ and pign, are needed for the reaction rate in (4), and
these will be chosen later in Section 5 for the particular numerical experiments studied.

4 Numerical method

The numerical method used to solve the governing equations in (1) is a high-resolution Godunov method.
The equations are discretized on an overlapping grid consisting of a set of curvilinear component grids as
discussed in Section 4.1. Adaptive mesh refinement (AMR) is incorporated to locally increase the grid
resolution near contacts, shocks and detonations, and the calculations are performed in parallel to obtain
well-resolved solutions. A Strang-type fractional-step scheme is used to advance the equations in time. One
step handles the nonlinear convection portion of the equations with the non-differentiated sources terms set
to zero, while the other step considers these source terms alone. Details of our fractional-step scheme are
given in Section 4.2. Two test problems are discussed in Section 4.3, and these are used to indicate the
convergence behavior of the numerical method.
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Param. Value Param. Value
ᾱ0 0.73 γ̄ 5
ρ̄0 5.0293 π̄ 0.16021
p̄0 3.5682e−4 C̄v 0.625
T̄0 1.2770e−2 q̄ 0.11795
ρ0 2.6470e−3 γ 1.35
p0 1.1843e−5 b 0.37778
T0 1.2770e−2 Cv 1

Table 1: Dimensionless upstream state and equation of state parameters.

Figure 1: Overlapping grid for the corner-turning flow geometry (left) and enlarged view near the corner
(right). The inlet grid is red, the background Cartesian grid is blue, and the boundary-fitted grid is green.
The (dimensionless) horizontal and vertical lengths are 8 and 4, respectively. (The resolution of the grid is
reduced by a factor of 8 for illustrative purposes.)

4.1 Overlapping grid framework

An overlapping grid for a flow domain Ω consists of a set of component grids {Gk} , k = 1, . . . ,Ng , that
cover Ω and overlap where they meet. Typically the bulk of the domain is covered by Cartesian grids
while smooth boundary-fitted grids are used to represent the boundary of the domain. For example, an
overlapping grid which describes the flow geometry for the corner-turning calculations discussed in Section 5
is shown in Figure 1. The overlapping grid (on the base level of refinement) consists of three component
grids, each defined by a smooth mapping x = Gk(r) from computational space r = (r1, r2) on the unit
square to physical space x = (x1, x2) . The grid shown in red on the left is an “inlet” grid where a steady
planar detonation wave is specified initially. The blue grid to the right is a Cartesian “background” grid
which represents the bulk of the flow domain. Finally, there is a boundary-fitted green grid which describes
the (smoothed) corner. The sharp corner is replaced by a smooth one with a radius of the order of the steady
reaction-zone thickness in order to remove the geometric singularity there. This smoothing has little effect on
the solution away from the corner. (See also the discussion in [12] for example.) The three component grids
shown in Figure 1 overlap as shown in the enlarged view of the grid on the right, and bi-linear interpolation
is used to communication the state variables of the flow from one component grid to another in the overlap
region (see [18] for further details).

Block-structured AMR is employed following the approach described originally in [25]. Refined-grid
patches are created and used to cover regions of the flow where the solution changes rapidly while coarser
grids are used where the solution is smooth. This allows us to perform calculations at a higher resolution
than would be possible had the entire domain been covered by a fine grid. Within the overlapping grid
framework each refinement grid is defined as a restriction of the smooth mapping x = Gk(r) belonging to
the coarser parent grid. In this manner the refinement grids retain the smooth description of the boundary.
All grids in the overlapping-grid system, including base-level grids and refinement grids, are treated the
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same within the computational kernels so that implementation of the AMR algorithm is greatly simplified.
Further details of our AMR approach for overlapping grids, including the choice for an error estimate and
the regridding algorithm, are discussed in [18].

The numerical method is implemented in parallel using a domain-decomposition approach based on
our previous work in [19]. The implementation is flexible so that each base grid within the overlapping-grid
structure and its associated refinement grids can be independently partitioned over a chosen set of processors.
A modified bin-packing algorithm is used to specify the partition for each grid so that the computational work
is evenly distributed amongst the processors. All components of the AMR algorithm such as error estimation,
regridding, and interpolation are performed in parallel. The corner-turning calculations discussed later in
Section 5 were run on a linux cluster with 32 processors.

4.2 Discretization of the governing equations

The discretization of the governing equations in (1) is carried out on each component grid Gk , k = 1, . . . ,Ng ,
in the overlapping-grid system. As mentioned previously, these grids include both base-level and refinement
grids. Each component grid is defined by a mapping x = Gk(r) from computational space r = (r1, r2) on
the unit square to physical space x = (x1, x2) . In computation space, the governing equations become

∂

∂t
u +

1
J

(
∂

∂r1
f̂1(u) +

∂

∂r2
f̂2(u)

)
=

1
J

(
ĥ1(u)

∂ᾱ

∂r1
+ ĥ2(u)

∂ᾱ

∂r2

)
+ k(u), (9)

where
f̂` = a`,1f1(u) + a`,2f2(u), ĥ` = a`,1h1(u) + a`,2h2(u), ` = 1, 2,

are mapped fluxes and coefficients of the nozzling terms, respectively, and

J =
∣∣∣∣∂(x1, x2)
∂(r1, r2)

∣∣∣∣ , a`,m = J

(
∂r`

∂xm

)
, ` = 1, 2, m = 1, 2, (10)

are given by the mapping x = Gk(r) .
The numerical method for the mapped equations in (9) follows that described in [16, 17] for the two-phase

model in one space dimension. The method employs a second-order, Strang-type, fractional-step scheme of
the form

Un+1
i,j = Sk(∆t/2)Sh(∆t)Sk(∆t/2)Un

i,j ,

where Un
i,j denotes the cell average of u(r, t) at a time tn on a uniform grid ri,j with mesh spacings

(∆r1,∆r2) . A global time step ∆t is used for all component grids for the step from tn to tn+1 , and its
value is chosen to satisfy a CFL stability condition. The operators Sh(τ) and Sk(τ) represent numerical
integrations of the equations

∂

∂t
u +

1
J

(
∂

∂r1
f̂1(u) +

∂

∂r2
f̂2(u)

)
=

1
J

(
ĥ1(u)

∂ᾱ

∂r1
+ ĥ2(u)

∂ᾱ

∂r2

)
, (11)

and
∂

∂t
u = k(u), (12)

respectively, over a time interval τ . The integration of (11) uses a second-order, slope-limited Godunov
method, which is modified to handle the non-conservative nozzling terms following the approach described
originally in [16] and extended in [17] to handle a virial equation of state for the gas phase. The integration
of (12) uses a second-order, adaptive Runge-Kutta method as described in [17]. Since the fractional-step
scheme and the integration of (12) have been described already for one-dimensional flow, we focus here on
the integration of (11) for two-dimensional flow which is new.

The hydro step, Ûi,j = Sh(∆t)Ui,j , uses a finite-volume discretization of (11) of the form

Ûi,j = Ui,j −
∆t

∆r1Ji,j

[
FL

1,i+1/2,j − FR
1,i−1/2,j

]
− ∆t

∆r2Ji,j

[
FL

2,i,j+1/2 − FR
2,i,j−1/2

]
+

∆t

∆r1Ji,j
H̃1,i,j +

∆t

∆r2Ji,j
H̃2,i,j ,

(13)
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where FL,R
1,i±1/2,j and FL,R

2,i,j±1/2 are numerical fluxes (including leading order contributions of the nozzling

terms), Ji,j is the jacobian of the mapping evaluated on the grid, and H̃`,i,j , ` = 1, 2 are second-order
corrections of the discretization of the nozzling terms. The calculation of the fluxes and the second-order
corrections of the nozzling terms is performed in a two-step manner. The first step involves computing
first-order, slope-limited values at the cell faces, ri±1/2,j and ri,j±1/2 , at t = tn + ∆t/2 , and the second
step uses these values as left and right states for a Riemann problem. The solution of the Riemann problem
is then used to compute FL,R

1,i±1/2,j , FL,R
2,i,j±1/2 and H̃`,i,j in (13).

Let us focus, for example, on the calculation of FL,R
1,i+1/2,j , the numerical fluxes at the cell face ri+1/2,j .

In order to compute slope-limited values at the cell face, we consider the quasi-linear form of (11) given by

∂

∂t
w + A1(w)

∂

∂r1
w + A2(w)

∂

∂r2
w = 0, (14)

where w = [ᾱ, ρ̄, v̄1, v̄2, p̄, ρ, v1, v2, p]T is a vector of primitive variables. The coefficient matrices in (14) are
given by

A`(w) =
1
J



ū` 0 0 0 0 0 0 0 0
0 ū` a`,1ρ̄ a`,2ρ̄ 0 0 0 0 0

−a`,1∆p/(ᾱρ̄) 0 ū` 0 a`,1/ρ̄ 0 0 0 0
−a`,2∆p/(ᾱρ̄) 0 0 ū` a`,2/ρ̄ 0 0 0 0

0 0 a`,1ρ̄c̄2 a`,2ρ̄c̄2 ū` 0 0 0 0
−ρ∆u`/α 0 0 0 0 u` a`,1ρ a`,2ρ 0

0 0 0 0 0 0 u` 0 a`,1/ρ

0 0 0 0 0 0 0 u` a`,2/ρ

−ρc2∆u`/α 0 0 0 0 0 a`,1ρc2 a`,2ρc2 u`


,

where the jacobian J and metrics a`,m of the mapping are given in (10), and

ū` = a`,1v̄1 + a`,2v̄2, u` = a`,1v1 + a`,2v2, ∆u` = u` − ū`, ∆p = p− p̄,

for ` = 1, 2 . The sound speeds, c̄ and c , for the solid and gas phases, respectively, are given by

c̄2 =
γ̄(p̄ + π̄)

ρ̄
, c2 =

γp

ρ

[
1 + bρ− b2ρ2

γ(1 + bρ)

]
.

A first-order approximation for w at ri+1/2,j is given by

w+
i+1/2,j = wn

i,j +
∆r1

2

(
∂w
∂r1

)n

i,j

+
∆t

2

(
∂w
∂t

)n

i,j

= wn
i,j +

1
2

(
I − ∆t

∆r1
An

1,i,j

)
δ1wn

i,j −
∆t

2∆r2
An

2,i,jδ2wn
i,j ,

(15)

where An
`,i,j = A`(wn

i,j) , ` = 1, 2 , and δ`wn
i,j is a discrete approximation for (∂r`

w)n
i,j∆r` . Slope-limiting

is performed in characteristic variables. Let Λ` be a diagonal matrix of eigenvalues of A` , and let R` be
the corresponding matrix of (right) eigenvectors so that A`R` = R`Λ` . Characteristic variables are then
defined by z` = R−1

` w , ` = 1, 2 . In terms of these characteristic variables, (15) becomes

w+
i,j = wn

i,j +
1
2
Rn

1,i,j

(
I − ∆t

∆r1
max{Λn

1,i,j , 0}
)

δ1zn
1,i,j −

∆t

2∆r2
Rn

2,i,jΛ
n
2,i,jδ2zn

2,i,j , (16)

where
δ1zn

1,i,j = minmod
(
(R1,i,j)−1(wn

i+1,j −wn
i,j) , (R1,i,j)−1(wn

i,j −wn
i−1,j)

)
,

and
δ2zn

2,i,j = minmod
(
(R2,i,j)−1(wn

i,j+1 −wn
i,j) , (R2,i,j)−1(wn

i,j −wn
i,j−1)

)
.
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Here, the maximum and minimum-modulus functions are performed component-wise. Similar steps give

w−
i+1/2,j = wn

i+1,j −
1
2
Rn

1,i+1,j

(
I +

∆t

∆r1
min{Λn

1,i+1,j , 0}
)

δ1zn
1,i+1,j −

∆t

2∆r2
Rn

2,i+1,jΛ
n
2,i+1,jδ2zn

2,i+1,j , (17)

which is a slope-limited approximation at the cell face ri+1/2,j from the cell at ri+1,j .

t
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R
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L α

R
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R
−
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−
+C

−
CS− R+

1

Figure 2: A representative solution of the one-dimensional Riemann problem in the r1 -direction consisting
of shocks, rarefactions and contact discontinuities indicated by the symbols S , R and C , respectively.
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Figure 3: Intermediate states of the (a) solid and (b) gas phases for a subsonic solid contact.

The numerical fluxes FL,R
1,i+1/2,j are obtained from the solution of the one-dimensional Riemann problem

∂

∂t
u +

1
J

(
∂

∂r1
f̂1(u)− ĥ1(u)

∂ᾱ

∂r1

)
= 0, with u(r1, 0) =

{
uL if r1 < 0,
uR if r1 > 0.

(18)

Here, uL and uR are conserved variables corresponding to the primitive states from (16) and (17), respec-
tively. A representative solution of (18) is shown in Figure 2. The solution consists of shocks, rarefactions
and a contact discontinuity in the gas phase all of which at constant ᾱ (either ᾱL or ᾱR as indicated in the
figure). There is also a contact discontinuity in the solid phase where ᾱ jumps and the phases couple. The
solution shown is a so-called “subsonic” case in which the solid contact lies between the acoustics fields of
the gas. This is relevant for the case of high drag between the phases as is studied here. Figure 3 shows the
intermediates states of the solution for each phase separately, and the central task of a solution procedure
is to obtain these states given uL and uR . Our solution approach follows that discussed in [16, 17] with
minor modifications made to handle the jacobian and metric terms (which are evaluated at ri+1/2,j and
held constant) and the passive component of velocity in the direction tangential to the face r1 = constant
for each phase. In Figure 3, for example, the components of the solid velocity v̄ normal and tangent to
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r1 = constant are given by

v̄n =
(a1,1, a1,2)√
a2
1,1 + a2

1,2

· v̄, v̄t =
(−a1,2, a1,1)√

a2
1,1 + a2

1,2

· v̄,

respectively, with similar expressions for the normal and tangential components of the gas velocity v . The
solution procedure for the intermediate states (ρ̄m, v̄n,m, p̄m) , m = 1, 2 , of the solid and the intermediate
states (ρm, vn,m, pm) , m = 0, 1, 2 , of the gas follows that described in our earlier papers, and typically
an approximate solution is used to reduce computational cost. Once these states are known, the numerical
fluxes FL,R

1,i+1/2,j are found by including the tangential component of the velocity from either the left or right
states depending on whether the contacts for the solid and gas lie to the left or right of the line r1 = 0 . For
example, the flux would be computed using the tangential component of the solid velocity from the right
state and the tangential component of the gas velocity from the left state according the solution shown in
Figure 3.

The numerical fluxes FL,R
2,i,j+1/2 are obtained in a similar manner from the solution of a corresponding

one-dimensional Riemann problem in the r2 -direction with suitable left and right values found from first-
order, slope-limited approximations. It is noted that the (L,R) superscripts indicate that there are two
numerical fluxes computed at each face. As mentioned earlier, these quantities combine an approximation
of the conservative flux and a leading order discretization of the nozzling terms which is non-conservative so
that the flux to the cell on the left may be different than that to the cell on the right (see [16] for the full
details). Finally, with the solution of the Riemann problem in hand, the second-order corrections H̃`,i,j ,
` = 1, 2 , are computed following the formulas given in [16], again with minor modifications to account for
the jacobian and metric terms, and the two components of the velocity.

4.3 Grid convergence

There are two problems central to the numerical study discussed in Section 5. The first is the initiation
of a one-dimensional detonation and its evolution to a steady wave, and the second is the diffraction of a
steady detonation at a 90◦ corner. In this section we perform a grid resolution study of two representative
examples of these problems in order to check the accuracy of the numerical method.

For the first example we consider evolution to detonation in one space dimension. The initial state of
the reactive material, and the parameters for the equations of state and relaxation terms, are those given
in Section 3. The dimensionless prefactor and ignition threshold for the reaction rate in (4) are taken to be
σ = 10 and pign = 0.45 , respectively, which are representative of the values considered in Section 5 (see
Table 2). The detonation is initiated by a high-speed piston impact of vpiston = 0.2131 which corresponds
to 1600 m/s . In order to judge convergence, we compare solutions computed using three grids with effective
grid spacings heff = 1/1600 , 1/6400 and 1/25600 . Figure 4 shows the behavior of the solid volume fraction
ᾱ and the gas pressure p from these three solutions. The plots in Figure 4(a) and (b) show the evolution to
detonation at (dimensionless) times t = 1, 2, . . . , 5 , and these indicate that the three solutions are in good
qualitative agreement. There is some quantitative difference in the solutions, primarily seen as a very small
shift in position generated early in the evolution due to the difference in the time when the reaction first
occurs at the back of the leading compaction wave (see the plot of ᾱ at t = 1 ). The time of first reaction
occurs when the gas pressure exceeds the threshold pign and this is sensitive to the grid resolution. The
plots in Figure 4(c) and (d) show enlarged views of ᾱ and p at t = 5 , and these give a clearer indication
of the convergence behavior of the developed detonation wave. The curves of ᾱ are very similar to one
another apart from a shift in position which becomes smaller as heff gets smaller. The curves of p show
this shift as well, and we also note that the peak pressure is nearly the same for the solutions at the two
finest resolutions, again indicating grid convergence.

As a second example we consider the diffraction of a steady detonation at a 90◦ corner. For this example
we take σ = 25 and pign = 0.53 for the reaction rate and compute the steady, one-dimensional detonation
wave on a fine grid with heff = 1/6400 . This solution is then used as the initial state for two-dimensional
calculations using the flow geometry shown previously in Figure 1. The leading edge of the steady detonation
is positioned initially in the inlet portion of the grid so that it travels to the right and meets the corner at
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Figure 4: Evolution to detonation for σ = 10 and pign = 0.45 at times t = 1, 2, . . . , 5 : (a) solid volume
fraction and (b) gas pressure. Effective grid spacing heff = 1/1600 (blue curves), 1/6400 (green curves)
and 1/25600 (red curves). Plots (c) and (d) show zoomed views at t = 5 .

t = 1 . Our main interest is in the behavior of the diffracted wave for t > 1 . In order to judge convergence
for this problem, we compute solutions on overlapping grids with heff = 1/400 , 1/800 and 1/1600 . Due
to the higher cost of computing two-dimensional solutions, the grid resolutions for this problem are coarser
than those considered for the one-dimensional problem. Figure 5 shows shaded contours of the solid volume
fraction and corresponding AMR grids for these solutions at t = 3.5 . The diffracted detonation wave
consists of a leading compaction layer (shown as a thin layer of pink where ᾱ ≈ 1 ) which is followed by a
reaction zone where ᾱ decreases to zero. Near the centerline, the detonation remains thin and is not effected
strongly by the diffraction at this time. Near the inner (vertical) wall, the detonation has been weakened
by the diffraction which results in a thickening of the leading compaction layer. The plots of ᾱ at the two
finer resolutions show good qualitative agreement of this behavior whereas the plot at the coarsest resolution
does not. For this coarse-grid solution, the error is large enough to change the behavior of the reaction zone
behind the leading compaction layer.

A more quantitative view of the behavior of the solutions may be seen in Figure 6. Here, we show the
behavior of ᾱ and p along the inner wall for the three grid resolutions at times t = 1, 2, 3, 4 . The curves of
the solution for the two finest resolutions (shown in red and green) are in very good agreement. As expected,
the curves of the solution at the coarsest resolution (shown in blue) are in poor agreement. All further
calculations of detonation diffraction are performed at the finest resolution heff = 1/1600 , the plots shown
here provide strong evidence that these solutions are well resolved.
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Figure 5: Detonation diffraction for σ = 25 and pign = 0.53 at time t = 3.5 . The top row shows shaded
contours of ᾱ and the bottom row shows the corresponding AMR grids. The left plots use a grid with
heff = 1/400 , the middle plots use heff = 1/800 and the right plots use heff = 1/1600 .
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Figure 6: Detonation diffraction for σ = 25 and pign = 0.53 at times t = 1, 2, 3, 4 . Behavior of (a) solid
volume fraction and (b) gas pressure along the inner wall. Effective grid spacing heff = 1/400 (blue curves),
1/800 (green curves) and 1/1600 (red curves).

5 Numerical results

In this study the primary intent is to explore the influence of the reaction rate C given in (4) on the
post-diffraction behavior of the detonation. Effects of varying σ , to which the reaction rate is directly pro-
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portional, and pign , which sets the pressure threshold at ignition, are examined. (The remaining parameters
of the two-phase model as well as the ambient state of the explosive were given in Section 3.) Computations
were carried out over a wide range of parameters but the present discussion is confined to the four cases
listed in Table 2.

Case σ pign

I 10 0.45
II 10 0.48
III 25 0.48
IV 25 0.53

Table 2: Reaction pre-factor σ and ignition threshold pign for Cases I, II, III and IV.
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Figure 7: Maximum value of the gas-phase pressure in a reactionless compaction wave as a function of the
impact speed provided by the piston

The values of the reaction-rate prefactor in Table 2 are of the same order as those employed in our
original study of the evolution of piston-initiated planar detonations [17]. However, the values of pign are
substantially higher than those considered earlier, and this requires some explanation. A low value of pign

has two consequences. First, it allows the detonation to be initiated by rather slow piston speeds, of the
order of 100 m/s in the earlier study. Second, it does not allow the possibility of reaction extinction
subsequent to corner turning as the gas-phase pressure in the post-diffraction state does not fall below the
very low initiation threshold. That, in turn, implies that the reaction-rate model can not admit dead zones
at low values of pign . Since a primary motivation of the present study is to explore whether dead zones are
feasible within the framework of the simple reaction rate model that has been adopted, higher values of the
ignition threshold need to be considered. Such values, in turn, require a higher piston speed to initiate a
detonation wave. Figure 7 shows the relationship between the impact speed of the piston and the maximum
gas-phase pressure generated in a compaction wave in the absence of reaction. For a given piston speed
the corresponding gas-phase pressure must exceed the ignition threshold for the reaction to begin. For our
numerical calculations of the cases listed in Table 2, a piston speed of 1600 m/s is used as this speed is
sufficient to overcome the ignition threshold for all four cases.

5.1 One-dimensional steady detonation structure

The corner-turning study assumes that a planar, steady detonation has been established in the narrow section
of the test configuration upstream of the corner. A brief description of the structure of this detonation is
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given below, for two cases representative of the four identified in Table 2 and which are to be investigated
in the diffraction study that follows in the next section.
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Figure 8: Steady detonation profiles of solid volume fraction ᾱ , solid-phase pressure p̄ and gas-phase
pressure p for (a) σ = 10 and pign = 0.45 , and (b) σ = 25 and pign = 0.48 . The distance x is measured
relative the leading edge of the detonation structure for each case.

Figure 8 displays the structure for the cases σ = 10 and pign = 0.45 (Case I) and σ = 25 and pign = 0.48
(Case III). Profiles of the solid volume fraction ᾱ , the solid-phase pressure p̄ and the gas-phase pressure p
are plotted for both cases. For the lower value of σ shown in Figure 8(a), the structure is led by a shock
in the solid phase, followed by a compaction zone in which the solid-phase pressure behind the shock falls
and the gas-phase pressure rises very slowly from its ambient value, while the solid volume fraction grows
to a near-unity maximum. The compaction zone terminates at the shock in the gas phase. The jump in gas
pressure across the gas-phase shock switches on the chemical reaction behind it, and as the solid reactant is
consumed the pressures fall through the reaction zone, staying in near-equilibrium. The length of the steady
detonation structure, defined here as the distance from the leading edge of the compaction layer to the point
where ᾱ = 0.1 , is found to be 0.413 . We note that the case σ = 10 and pign = 0.48 displays a similar
behavior.

Figure 8(b) shows the steady-state detonation structure for the case σ = 25 and pign = 0.48 . The higher
reaction rate corresponding to the larger value of the prefactor leads to a thinner detonation structure, which
is determined to be 0.127 . The leading shock in the solid phase is now followed by a two-zone compaction
layer. In the first zone the increase in the solid volume fraction is accompanied by a gradual decrease in
the solid-phase pressure, while the gas-phase pressure stays undisturbed at the ambient value. The second
compaction zone is triggered by an increase in the gas-phase pressure. In this zone the solid-phase pressure
continues to fall, more steeply now than it did in the first compaction zone, and the solid volume fraction
continues to rise. When the gas-phase pressure just pushes past the ignition threshold to switch on the
chemical reaction, the second compaction zone is terminated. The solid volume fraction reaches a peak at
that location, at a level significantly lower that that for the case σ = 10 , while the solid-phase pressure
reaches a local minimum. As the reaction intensifies the solid volume fraction begins to drop and the solid-
phase pressure reverses course and begins to rise. The gas-phase pressure, which had been rising in the second
compaction zone, continues to do so and approaches the solid-phase pressure. Both reach their respective
maxima more or less together and then begin a gradual drop, maintaining near-equilibrium thereafter. The
case σ = 25 and pign = 0.53 displays a similar behavior.

5.2 Two-dimensional detonation diffraction

We now present the results of diffraction as the steady, planar detonation rounds a 90◦ corner. The geometry
consists of a narrow channel giving way abruptly to a wider channel, as shown in Figure 1. The confining
walls are taken to be rigid and the steady detonation is assumed to propagate through the narrow segment
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solid volume fraction0 1 gas pressure0 1.2 gas pressure0 1.2

Figure 9: Case I ( σ = 10 , pign = 0.45 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 0 (first row), t = 1.2 (second row),
t = 1.4 (third row) and t = 1.8 (fourth row).
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Figure 10: Case I ( σ = 10 , pign = 0.45 ): Profiles of solid volume fraction (left), gas pressure (middle) and
reaction rate (right) along the wall at times t = 1.0 , 1.2 , 1.4 and 1.8 . The arrow in the solid volume
fraction plots points to the sharp interface between partially reacted but frozen region and the reaction zone
at time t = 1.8.

prior to rounding the corner. Inlet boundary conditions correspond to flow behind the steady wave, and
no-reflection boundary conditions are applied at the outlet. At time t = 0 the planar detonation is located
in the narrow part of the channel one length unit upstream of the corner, and is propagating steadily towards
the corner. The expansion is first sensed by the detonation at time approximately t = 1 upon arrival at the
corner.

Certain general observations can be made before embarking on a detailed description of each of the four
cases selected for investigation. As mentioned above, upstream of the corner the wave has a steady, planar
structure consisting of a lead shock in the solid phase, followed in turn by a compaction zone, a shock in
the gas phase and a reaction zone. Diffraction at the corner reduces the strength of the wave and lends it
curvature. This reduction is most pronounced at the corner and along the wall downstream of the corner,
and spreads into the interior of the channel away from the corner in a roughly circular region of increasing
radius. Reduction in the strength of the solid shock lowers the compaction rate behind it, whereas reduction
in the strength of the gas shock lowers the reaction rate behind it. If the reduced pressure at the gas
shock were to drop below the ignition threshold, the reaction immediately behind the gas shock would be
extinguished. For the parameter choices we have made such extinction does occur in all cases, starting at
the wall and extending some distance away from it, while farther away from the wall the reaction continues
behind the gas shock albeit at a reduced rate in the region of reduced gas-shock pressure. Thus a point of
transition, or kink, is established on the gas shock. Between the wall and this transition point the pressure
at the gas shock, already below the ignition threshold, continues to drop. Beyond the transition point away
from the wall the gas shock is stronger, with support provided by the reaction behind it. As time evolves
the transition point is pushed towards the wall and upon reaching it, raises the gas pressure there to a level
above the ignition threshold, thereby reviving the reaction at the wall in a thin layer immediately behind
the gas shock. It is the extent of this revival that determines the fate of the detonation after it has turned
the corner.

The four cases listed in Table 2 are now described individually.

5.2.1 Case I ( σ = 10 , pign = 0.45 )

The early time results, from t = 1 to t = 1.8, are shown in Figure 9. A set of three frames is displayed
at each time level, corresponding to shaded contours of solid volume fraction, gas pressure and density
gradients (highlighting shocks and contact lines), the latter in a numerically generated schlieren plot based
on the mixture density ρmix = αρ + ᾱρ̄ . As the detonation wave rounds the corner it weakens, first in the
vicinity of the corner and then in an expanding region centered at the corner, as outlined above. At t = 1.2
there emerges a narrow region near the corner in which the gas pressure behind the gas shock has dropped
below the ignition threshold pign = 0.45 and consequently, the reaction there has ceased to occur. Upon
close examination of the gas pressure contours at this time, a hint of the aforementioned kink in the gas
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solid volume fraction0 1 gas pressure0 1.2 gas pressure0 1.2

Figure 11: Case I ( σ = 10 , pign = 0.45 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 2.0 (first row), t = 2.5 (second row),
t = 3.5 (third row) and t = 4.5 (fourth row).
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shock can be detected, above which the pressure behind the gas shock is high enough to keep the reaction
from extinction. At time t = 1.4 the kink is seen to have reached the wall, and at t = 1.8 the gas pressure
at the wall is found to have returned to levels above the ignition threshold.

Additional insight into the behavior at the wall can be gleaned by examining the profiles of solid volume
fraction, gas pressure and reaction rate at the wall, shown in Figure 10. In this figure (and all subsequent
wall-plot figures) the ordinate is the distance along the wall, with 1 being the approximate location of the
corner, and the (scaled) reaction rate is given by −C/ max |C| , where the maximum is taken over the times
plotted. We note that at t = 1.2 the pressure at the gas shock, and in a zone some distance behind it, has
fallen to a level below the ignition threshold pign = 0.45, thereby freezing the reaction in this zone. The
reaction does continue to occur behind the frozen zone, to be sure, but at a substantially reduced level. The
profiles at subsequent times show the pressure at the gas shock to have suddenly risen to values above the
ignition threshold due to the arrival of the kink, thereby reviving the reaction immediately behind the shock.
However, this revival is confined to a narrow layer adjacent to the shock, behind which there continues to
develop an expanding region of low gas pressure and extinguished reaction. At t = 1.8 a sharp interface
has appeared in the solid volume fraction profile (shown by arrow), separating the reaction zone adjacent to
the gas shock from the layer behind it in which the reaction is frozen. The decline and then the revival of
the reaction rate are also on display in the reaction-rate profiles.

The late time results are shown in the shaded contour plots in Figure 11 from t = 2.0 to 4.5 . As the
front advances along the wall the compaction zone, confined to the region between the solid and gas shocks,
appears to maintain a nearly constant thickness, a feature that is best seen in the schlieren plots. Behind
the gas shock the gas pressure declines, thereby limiting the reaction to a narrow zone behind the gas -phase
shock, the zone being thinnest at the wall and becoming thicker away from it. The pocket of low gas pressure
and frozen reaction lies behind the reaction zone, hugging the wall and growing in size, and maintaining
within it a level of solid volume fraction close to that in the ambient, unreacted explosive.
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Figure 12: Case I ( σ = 10 , pign = 0.45 ): Profiles of solid volume fraction (left), gas pressure (middle) and
the reaction rate (right) along the wall at times t = 2.0, 2.5, . . . , 4.5 .

Supplemental information is provided by the plots of Figure 12, which display profiles of solid volume
fraction, gas pressure and reaction rate along the wall. A quasisteady structure with only a partial consump-
tion of reactant emerges, consisting of a compaction zone followed by a narrow reaction layer and a broader
region of frozen reaction. The wave gradually gains strength, as exhibited by higher pressures at the gas
shock and taller reaction-rate peaks. By the last time level shown a significant increase in the width of the
reaction zone has occurred, evident in all three plots but especially in the dip in the solid volume fraction
profile within the pocket of hitherto frozen reaction. In brief, diffraction has generated a growing region of
partially reacted explosive, in a state of frozen reaction, near the wall. Even though the lead wave is gaining
strength, given the proximity of the wavehead to the lower boundary of the configuration there is insufficient
room available for the structure to undergo further changes of significance before exiting the domain.
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(a)

(b)

solid volume fraction0 1 gas pressure0 1.2

Figure 13: Shaded contours of solid volume fraction ᾱ (left) and gas pressure p (right) in the vicinity of
the corner at time t = 1.8 for (a) Case I ( σ = 10 , pign = 0.45 ) and (b) Case II ( σ = 10 , pign = 0.48 ).
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Figure 14: Profiles of solid volume fraction (left) and gas pressure (right) along the wall at time t = 1.8 for
(a) Case I ( σ = 10 , pign = 0.45 ) and (b) Case II ( σ = 10 , pign = 0.48 ).

5.2.2 Case II ( σ = 10 , pign = 0.48 )

The early time results for this case are very similar to those for Case I above. This is confirmed by the
nearly-identical shaded contour plots for the two cases, each at time t = 1.8, displayed in Figure 13. There
are subtle differences between the two cases, however, which will cause evolution for Case II to depart
significantly at later times from that for Case I. These differences can be seen in the wall plots for solid
volume fraction and gas pressure shown in Figure 14, again for t = 1.8. From the solid volume fraction
profiles we observe that the waveheads corresponding to the lead compaction waves are essentially at the
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solid volume fraction0 1 gas pressure0 1.2 gas pressure0 1.2

Figure 15: Case II ( σ = 10 , pign = 0.48 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 2.0 (first row), t = 2.5 (second row),
t = 3.5 (third row) and t = 4.5 (fourth row).
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same location for the two cases. The two compaction zone profiles are also coincident except in the rear,
indicating that the compaction zone is thicker for Case II. The gas-phase pressure profiles show that the gas-
phase shock for Case II lags behind that for Case I, again confirming the disparity between the widths of the
two compaction zones. At the same time the higher ignition threshold for Case II makes the corresponding
reaction zone thinner, and this difference in the widths of the reaction zone will play an important role as
the system evolves. Returning to the solid volume fraction profiles again, we note that in the reaction zone
at the rear of the compaction zone the reactant consumption for Case II is already much less than that for
Case I.

The late time results are shown in the shaded contour plots in Figure 15 from t = 2.0 to 4.5 . Again,
as in Case I, the compaction zone thickness in the diffracted wave is essentially steady, but now noticeably
broader than that in the undiffracted part of the wave close to the channel axis. The compaction zone
terminates at the gas shock, behind which the gas pressure in the diffracted wave is low and a growing
pocket of frozen reaction develops. Unlike Case I, there is no sign of revival of reaction in this pocket, and
it can truly be termed a dead zone.
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Figure 16: Case II ( σ = 10 , pign = 0.48 ): Profiles of solid volume fraction (left), gas pressure (middle) and
the reaction rate (right) along the wall at times t = 2.0, 2.5, . . . , 4.5 .

The wall plots of Figure 16 confirm these features, and show more clearly the quasisteadiness of the
structure. Rapid decline of gas pressure in the thin reaction zone is followed by a broadening plateau in
which the gas pressure is uniform and below the ignition threshold. The level of compaction in this plateau
is also uniform at a level significantly above the ambient but below that in the leading compaction zone,
indicating a partially reacted dead zone. It is instructive to compare these wall plots with those in Figure 12;
the comparison shows that a small change in the ignition threshold has led to a substantial difference in the
eventual outcomes of Cases I and II.

5.2.3 Case III ( σ = 25 , pign = 0.48 )

It may be argued that a logical choice for Case III at the higher value of σ would just be the Case-I value
of the ignition threshold, pign = 0.45 . However, since Case I represents a marginal situation in which the
diffracted wave contains a partially-reacted near-wall region wherein the reaction is frozen but shows signs
of revival, it is clear that increasing the reaction rate would simply make the wave stronger and cause the
revival to occur sooner. In order to retain the tension between a stronger rate and a higher threshold, we
have elected to present results for pign = 0.48 . Thus Case III can be thought to be the counterpart of
Case II, and it would be interesting to see if the appearance of the dead zone in Case II is mitigated by the
stronger rate due to the higher value of σ .

Shaded contours for early times, from t = 1.0 to 1.8 , are shown in Figure 17. The contours of solid
volume fraction, at t = 1 for example, show that the stronger rate of reaction adopted here generates zones
of lead compaction and reaction which are thinner than those in Case II. As before the reaction weakens
upon corner turning due to the lowering of the gas pressure, but now the reduced rate of consumption of the
compacted reactant allows the compaction zone to become stronger and broader, as seen in both the solid
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solid volume fraction0 1 gas pressure0 1.3 gas pressure0 1.2

Figure 17: Case III ( σ = 25 , pign = 0.48 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 1.0 (first row), t = 1.6 (second row),
t = 1.7 (third row) and t = 1.8 (fourth row).
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volume fraction and the schlieren diagrams at t = 1.6 . Away from the corner the gas shock remains strong,
and the kink in the gas shock profile (more a hook than a kink in this case) is now visible very prominently
at time t = 1.6 in all three plots. At time t = 1.7 the kink has reached the wall and raised the gas pressure
there. The reflected disturbances can be discerned, again in all three plots, at t = 1.8 .
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Figure 18: Case III ( σ = 25 , pign = 0.48 ): Profiles of solid volume fraction (left), gas pressure (middle)
and reaction rate (right) along the wall at times t = 1.0, 1.2, 1.4, 1.6, 1.7 and 1.8.

Profiles of solid volume fraction, gas pressure and reaction rate at the wall at early times are plotted
in Figure 18. The solid volume profile at t = 1.0 , just prior to the wave reaching the corner, confirms
that although the detonation is compaction-led, the lead compaction zone is thin and in it the solid volume
fraction has a peak well below that corresponding to full compaction. At t = 1.2 the situation is quite
different; the gas pressure at the gas shock has dropped sufficiently to have caused the reaction to cease
everywhere, and the loss of reaction has broadened and strengthened the lead compaction zone. At t = 1.4
and t = 1.6 the reaction remains extinguished and consequently the compaction zone continues to become
wider and stronger still. At t = 1.7 the gas-pressure peak and hence the reaction rate have undergone a
sudden rebirth, the result of lateral reinforcement provided by the slamming of the kink in the gas pressure
profile against the wall. At t = 1.8 the gas pressure at the wall has acquired a broader profile and although
the pressure at the peak is lower it remains well above the ignition threshold, and a similar behavior is
evident in the reaction-rate profile as well. At the same time the increased consumption of the compacted
reactant has returned the compaction zone to a weaker and narrower profile.

The late time results are shown in the shaded contour plots in Figure 19 from t = 2.0 to 4.0 . They
show a gradual spreading of the influence of the corner, and a quasisteady evolution of the structure in this
region. This structure is led by a thin compaction zone followed by a comparably thin reaction zone in
which consumption of the reactant is nearly complete. What distinguishes this structure from that in the
pre-diffraction phase is that gas pressure behind the reaction zone is now much lower. These features are
confirmed in the wall plots of solid volume fraction, gas pressure and reaction rate shown in Figure 20. The
wall plots also confirm the quasisteady evolution of the wave.

5.2.4 Case IV ( σ = 25 , pign = 0.53 )

We retain the prefactor value at 25 , but increase the ignition threshold to 0.53 . Shaded contours for early
times, from t = 1.0 to t = 1.9 , are shown in Figure 21. The situation is similar to that seen in the early-time
evolution for Case III, except that the hydrodynamic features are now more striking. The higher value of the
ignition threshold causes the reaction, occurring strongly at t = 1 , to be fully extinguished near the corner
as the wave goes around it. The resulting structure, consisting of a thicker compaction zone and lower gas
pressures in the near-corner region is evident in the three panels at time t = 1.4 . In the near-wall region the
gas shock separates the fully reacted material from the unreacted but compacted reactant. Away from the
wall the gas shock is now hooked, and the hook, clearly visible at t = 1.4 in all three plots, has strengthened
by time t = 1.7 to an extent stronger than that seen in Case III. As the hook advances towards the wall,
it raises the gas-phase pressure at the gas shock and revives the reaction behind it. The associated lateral
disturbance of high gas pressure approaches the wall, with which it collides at t = 1.9 .
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solid volume fraction0 1 gas pressure0 1.3 gas pressure0 1.2

Figure 19: Case III ( σ = 25 , pign = 0.48 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 2.0 (first row), t = 2.5 (second row),
t = 3.5 (third row) and t = 4.0 (fourth row).
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Figure 20: Case III ( σ = 25 , pign = 0.48 ): Profiles of solid volume fraction (left), gas pressure (middle)
and the reaction rate (right) along the wall at times t = 2.0, 2.5, . . . , 4.0

The loss of reaction upon diffraction is clearly seen in the wall plots of Figure 22, as is the resulting
strengthening and widening of the lead compaction zone. The reaction is not revived until t = 1.9 , when
the gas pressure is raised above the ignition threshold by the arrival of the lateral disturbance.

Shaded contours for intermediate times t = 2.0 to 2.6 are shown in Figure 23. At t = 2.0 the lateral
disturbance has undergone a reflection and is now traveling away from the wall. This disturbance, in the
form of a gas shock at pressures above the ignition threshold, is traversing a region that contains some
unreacted material. It therefore initiates reaction in which the said material is consumed. Meanwhile, as
shown in the intermediate-time wall plots of Figure 24, the post-reflection evolution at the wall experiences
a continual drop in the gas pressure, with an accompanying decline in the reaction rate. At t = 2.6 the
reaction peak has fallen to 20% of its value at t = 2.0 .

The strength of the wave continues to decline in the near-wall region. The shaded contour plots for times
t = 2.8 to 4.0 in Figure 25 show the development and growth of a pocket of extinguished reaction, where
the wave has degenerated into a compaction front. This feature is reinforced in the wall plots of Figure 26,
which show the broadening compaction zone and the existence of sub-ignition values of the gas pressure
downstream of the corner. Effectively, therefore, diffraction has given rise to a dead zone.

6 Conclusions

This paper presents the first diffraction study of the two-phase model of heterogeneous explosives. The intent
has been to determine whether dead zones (pockets of extinguished reaction) are feasible within the model
as postulated, or does one need to include additional complexity, in the reaction rate for example, to admit
them. The study demonstrates that the pressure threshold for ignition and the reaction-rate prefactor can
indeed conspire to produce dead zones by themselves, without the introduction of additional mechanisms.

Diffraction past the corner creates a region of extinguished reaction in the vicinity of the corner, owing
to a drop in the gas-phase pressure there below the ignition threshold. The higher the ignition threshold,
the larger is the pocket of extinction created at this stage. The loss of reactive support causes the gas-phase
shock to slow down even more than it would have done as a result of diffraction-induced expansion alone.
Away from the corner the drop in the gas-phase pressure is less severe and the reaction continues, albeit at
a reduced rate. The larger the reaction-rate prefactor, the stronger is the reaction in this region of reduced
reaction rate. The reduction in rate causes the gas-phase shock to lose speed, but to a much lesser extent
than in the near-wall region. A gradient of shock speed, and an associated gradient of post-shock gas-phase
pressure, is therefore setup along the gas-phase shock. This gradient drives the reaction-supported segment
of the gas-phase shock towards the wall, allowing it to overtake the unsupported segment of the shock there,
and thereby raising the local gas-phase pressure. The larger the reaction-rate prefactor, the stronger is the
gas-phase pressure rise. If the higher pressure overcomes the ignition threshold, then the reaction switches
on again, in a segment of the hitherto extinguished region behind the gas-phase shock and adjacent to the
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solid volume fraction0 1 gas pressure0 1.3 gas pressure0 1.2

Figure 21: Case IV ( σ = 25 , pign = 0.53 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 1.0 (first row), t = 1.4 (second row),
t = 1.7 (third row) and t = 1.9 (fourth row).
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Figure 22: Case IV ( σ = 25 , pign = 0.53 ): Profiles of solid volume fraction (left), gas pressure (middle)
and reaction rate (right) along the wall at times t = 1.0, 1.2, . . . , 1.8 and 1.9 .

wall whose extent is determined by the ignition threshold; the higher the ignition threshold, the thinner
is the region in which the reaction is revived. As the wave advances along the wall, too thin a reaction
zone may be unable to couple with the wave and the reaction may extinguish again, thereby resulting in a
sustained dead zone of unreacted material. This is the scenario for Case IV, as seen in the late-time shaded
contour plots of Figure 25 and in the mid-time and late-time wall plots of Figures 24 and 26 respectively.
A somewhat thicker reaction zone will persist and result in a more-or-less quasisteady wave structure, in
which a zone of high level of compaction is followed by a thin zone of reaction, which in turn is followed by
a thicker zone of extinguished reaction but a lower level of compaction, i.e. a dead zone of partially reacted
material. This state of affairs exists for Case II, as seen in the shaded contour plots of Figure 15 and the
late-time wall plots of Figure 16. A still thicker reaction zone will couple with the gas-phase shock and coax
the structure towards a fully fledged detonation, as happens in Case III and is shown in the shaded contour
plots of Figure 19 and the late-time wall plots of Figure 20. Case I shows a similar inclination, but the
amplification of the wave occurs much too slowly for it to mature before it runs out of room and exits the
configuration; see Figure 11 and the late-time wall plots of Figure 12.

This behavior is at variance with what one finds in the ignition-and-growth model [12, 13]. There, pockets
of extinguished reaction appear downstream of the corner and near the confining wall only for short times,
and are overrun by strong lateral disturbances that originate in the interior of the domain, see Figure 18
in [13] for example. Sustained dead zones are admitted only in an enhanced ignition-and-growth model
that takes into account the desensitization of the explosive due to the passage of weak shocks. The reason
why the original ignition-and-growth model is unable to admit dead zones lies in the postulated form of
the reaction-rate in that model, which employs a density threshold for ignition. Diffraction past the corner
produces much smaller changes in density than in pressure, which accounts for the reduced sensitivity of
the reaction rate to diffraction in the ignition-and-growth model. This also suggests why replacing a rigid
confinement with a compliant confinement in that model does not promote the appearance of dead zones.
We anticipate that compliant confinement of the two-phase model may aid further in producing dead zones,
and are presently engaged in extending our numerical scheme to investigate that possibility. Higher values
of ambient compaction are also under study.
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solid volume fraction0 1 gas pressure0 1.7 gas pressure0 1.2

Figure 23: Case IV ( σ = 25 , pign = 0.53 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 2.0 (first row), t = 2.2 (second row),
t = 2.4 (third row) and t = 2.6 (fourth row).
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Figure 24: Case IV ( σ = 25 , pign = 0.53 ): Profiles of solid volume fraction (left), gas pressure (middle)
and reaction rate (right) along the wall at times t = 2.0, 2.2, 2.4, 2.6 .
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Figure 25: Case IV ( σ = 25 , pign = 0.53 ): Shaded contours of solid volume fraction ᾱ (left), gas pressure
p (middle) and numerically generated schlieren (right) at times t = 2.8 (first row), t = 3.0 (second row),
t = 3.5 (third row) and t = 4.0 (fourth row).
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Figure 26: Case IV ( σ = 25 , pign = 0.53 ): Profiles of solid volume fraction (left) and gas pressure (right)
along the wall at times t = 3.0, 3.5, 4.0 .
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